Home » Class IX (S-II) » Maths IX A, B, C (S-II)

# Maths IX A, B, C (S-II)

PART A: NUMBER SYSTEM

1.      Insert 6 rational numbers between   and

2.      Convert the following decimals into its simplest form:

(a)   0.175    (b) 0.0016   (c)     (d) .

3.      Write one  rational number and one irrational number between   and

4.      Represent    on the number line.

5.      Find  geometrically  on the number line.

6.      Visualise 3.765 on the number line using successive magnification.

7.      Simplify :

8.      Rationalise the denominator and simplify:  .

9.      Simplify:     .

10.  If  , find the values of  p  and  q.

PART B: POLYNOMIALS

1.      MCQ:

(I)                 Which of the following is not a polynomial ?

[ (A) x2 – √2x + 3   (B) x2 – 2√x +3   (C) x2 + 3    (D)  – 3 ]

(II)               The degree of the polynomial  3x3 – 7x4 + 5x + 3   is

[ (A) 3   (B) 4   (C) 7  ( C) –7 ]

(III)             Zero of the polynomial p(x) = a2x  is

[ (A) x = 0  (B) x = 1  (C) x =  – 1 (D) x = 2 ]

(IV)             If p(x) = 1 – x – x2 – x3 , then  p( – 1 ) is

[ (A) 1    (B) – 1    (C) 0    (D) 2 ]

(V)               Degree of a zero polynomial is

[ (A) 0  (B) 1  (C)  – 1  (D) Not Defined ]

2.      Find the value of the polynomial p(t) = 4t4 + 5t2 – t2 + 6  at

(i) t = 0  (ii) t = 0 – 1   (iii) t = 1

3.      Show that 3 is a zero of the polynomial x3 + x2 – 17x + 15

4.      By remainder theorem, find the remainder when 3x4 – 4x3 – 3x – 1  is divided by x + 2.

5.      Check whether g(x) = x – 2  is a factor of f(x) = x3 – 3x2 + 4x – 4

PROJECTS ( Choose any one)

1. A power point presentation or write an article on  any one of the following the topic

(A) “ π – the magnificent number in Mathematics”

(B)  History of the Mathematician – Pythagoras

(must include his date of birth, place of birth  , country, educational background, achievements, contribution in the field of mathematics etc..)

2. A working model for the identity: (a + b)3 = a3 + 3a2b + 3ab2 + b3

Date of Submission : 24 – 06 – 2013

Mr  B.SIVAKUMAR, TGT MATHS