Home works and Assignments Online

Home » Class IX (S-II) » Maths IX A, B, C (S-II)

Maths IX A, B, C (S-II)

PART A: NUMBER SYSTEM

1.      Insert 6 rational numbers between  clip_image002 and clip_image004

2.      Convert the following decimals into its simplest form:

(a)   0.175    (b) 0.0016   (c)  clip_image006   (d) clip_image008.

3.      Write one  rational number and one irrational number between clip_image010  and  clip_image012

4.      Represent   clip_image014 on the number line.

5.      Find  geometrically clip_image016 on the number line.

6.      Visualise 3.765 on the number line using successive magnification.

7.      Simplify : clip_image018

8.      Rationalise the denominator and simplify:  clip_image020.

9.      Simplify:     clip_image022.

10.  If  clip_image024, find the values of  p  and  q.

PART B: POLYNOMIALS

1.      MCQ:

(I)                 Which of the following is not a polynomial ?

[ (A) x2 – √2x + 3   (B) x2 – 2√x +3   (C) x2 + 3    (D)  – 3 ]

(II)               The degree of the polynomial  3x3 – 7x4 + 5x + 3   is

[ (A) 3   (B) 4   (C) 7  ( C) –7 ]

(III)             Zero of the polynomial p(x) = a2x  is

[ (A) x = 0  (B) x = 1  (C) x =  – 1 (D) x = 2 ]

(IV)             If p(x) = 1 – x – x2 – x3 , then  p( – 1 ) is

[ (A) 1    (B) – 1    (C) 0    (D) 2 ]

(V)               Degree of a zero polynomial is

[ (A) 0  (B) 1  (C)  – 1  (D) Not Defined ]

 

2.      Find the value of the polynomial p(t) = 4t4 + 5t2 – t2 + 6  at

(i) t = 0  (ii) t = 0 – 1   (iii) t = 1

3.      Show that 3 is a zero of the polynomial x3 + x2 – 17x + 15

4.      By remainder theorem, find the remainder when 3x4 – 4x3 – 3x – 1  is divided by x + 2.

5.      Check whether g(x) = x – 2  is a factor of f(x) = x3 – 3x2 + 4x – 4

PROJECTS ( Choose any one)

1. A power point presentation or write an article on  any one of the following the topic

(A) “ π – the magnificent number in Mathematics”

(B)  History of the Mathematician – Pythagoras

(must include his date of birth, place of birth  , country, educational background, achievements, contribution in the field of mathematics etc..)

2. A working model for the identity: (a + b)3 = a3 + 3a2b + 3ab2 + b3

Date of Submission : 24 – 06 – 2013

Mr  B.SIVAKUMAR, TGT MATHS


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: